Isolation and Structural Characterization of the Lithium Cyanoorganocuprate Salt $[Li(THF)_2 \{Cu(CN)C_6H_3-2,6-Trip_2\}]_2 (Trip =$ $-C_6H_2-2,4,6-i-Pr_3$

Cheong-Soo Hwang and Philip P. Power*

Department of Chemistry, University of California Davis, California 95616

Received March 20, 1998

The unsymmetrical lithium cyanoorganocuprates Li[Cu(CN)R] (1) were originally introduced into organocopper chemistry as alternative synthetic reagents to the symmetrical lithium diorganocuprates Li[CuR₂].¹ This adaptation was based on earlier work² involving related unsymmetrical lithium cuprates of the type Li- $[Cu(C \equiv C - R')R]$, which showed that the R group was preferentially transferred, thereby conserving an equivalent of the potentially valuable R group in forming the alkylating agent. Subsequently, the addition of 2 equiv of an organolithium reagent LiR to CuCN was reported³ to give a new type of highly reactive cyanoorganocuprate reagent of the proposed formula Li2[Cu(CN)-R₂] in which the two R groups and CN⁻ ligand were assumed to be bound directly to copper to give, in effect, a "higher-order" cyanocuprate.⁴ The structures of these interesting species have been the focus of intense study. Initial investigations with ¹³C NMR spectroscopy indicated that the CN⁻ group was bound to copper.⁵ However, subsequent ¹³C NMR studies⁶ indicated that the shift of the CN⁻ carbon was unaffected by the changes in the R group implying that CN⁻ was not bound to copper. These findings were later corroborated by EXAFS⁷ and IR⁸ data as well as by calculations.^{9,10} This work favored the non-higher-order formulas 2-4 as probable structures. The most recent ¹⁵N, ⁶Li. and ¹³C NMR data also strongly favor structure 2.¹¹

In contrast, somewhat less attention has been given to the "lower-order" cyanocuprates; ¹³C NMR¹² and EXAFS⁷ data indicate that CN⁻ is directly bound to the copper, and that the copper coordination is probably linear as shown in 1. Evidence for dimer formation was adduced,¹² but the interaction (if any) between the Li⁺ ion and the [Cu(CN)R]⁻ anion is not well defined. Such interactions are obviously crucial to the structures of 1-4. Heretofore, no X-ray structures of cyanoorganocuprate species of type 1 have appeared in the literature and EXAFS data⁷ have not thrown light on the disposition of the Li⁺ ion. Such

(1) Gorlier, J.-P.; Hamon, L.; Levisalles, J.; Wagnon, J. J. Chem. Soc., Chem. Commun. 1973, 88.

(2) Corey, E. J.; Beames, D. J. J. Am. Chem. Soc. 1972, 94, 7210.

(3) Lipschutz, B. H.; Wilhelm, R. S.; Floyd, D. M. J. Am. Chem. Soc. 1981. 103. 7672

(4) Lipschutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A. Tetrahedron 1984,

40, 5005. (For a contrary view see: Bertz, S. H.; Fairchild, E. H. in Reagents for Organic Synthesis; Paquette, L., Ed.; Wiley: New York, 1995; p 1341).

(5) Lipschutz, B. H.; Kozlowski, J. A.; Wilhelm, R. S. J. Org. Chem. 1984, 49. 3943.

(6) Bertz, S. H. J. Am. Chem. Soc. 1990, 112, 4031. (For a contrary view see: Lipshutz, B. H.; Sharma, S.; Ellsworth, E. L. J. Am. Chem. Soc. 1990, 112, 4032).

(7) (a) Stemmler, T. J.; Penner-Hahn, J. E.; Knochel, P. J. Am. Chem. Soc. **1993**, *115*, 348. (b) Barnhart, T. M.; Huang, H.; Penner-Hahn, J. E. J. Org. Chem. 1995, 60, 4310.

(8) Huang, H.; Alvarez, K.; Lue, Q.; Barnhart, T. M.; Snyder, J. P.; Penner-(9) Stemmler, T. J.; Barnhart, T. M.; Penner-Hahn, J. E.; Tucker, C. E.;

Knochel, P.; Böhme, G.; Frenking, G. J. Am. Chem. Soc. 1995, 117, 12489. (10) (a) Snyder, J. P.; Spangler, D. P.; Behling, J. R.; Rossiter, B. J. Org.

Chem. 1994, 59, 2665. (b) Snyder, J. P.; Bertz, S. H. J. Org. Chem. 1995, 60,

4312 (11) Bertz, S. H.; Nilsson, K.; Davidsson, O.; Snyder, J. P. Angew. Chem., Int. Ed. Engl. 1998, 37, 314.

(12) Bertz, S. H. J. Am. Chem. Soc.1991, 113, 5470.

Chart 1

compounds have, in fact, proved elusive to crystallize or purify.¹³ In this paper the synthesis and spectroscopic and structural characterization of the compound [Li(THF)₂{Cu(CN)C₆H₃-2,6- $Trip_{2}$]₂ (5), which is the THF-solvated lithium salt of the {Cu- $(CN)C_6H_3-2,6-Trip_2\}^-$ ion, are now reported.

Compound 5 was synthesized¹⁴ under anaerobic and anhydrous conditions by the reaction of $(Et_2O)LiC_6H_3-2,6-Trip_2^{14}$ with a CuCN suspension in Et₂O/THF (20:1) solution. It was obtained as colorless, air-sensitive crystals which displayed relatively high thermal stability. Its X-ray crystal structure¹⁶ is illustrated in Figure 1. It crystallizes as well-separated centrosymmetric dimers. Dimerization occurs through the bridging interactions of the two Li⁺ ions with nitrogens from the cyanide ligands and is thus very different from the type of dimerization seen in the Gilman dimer 6. The Li⁺ ions in 5 are each further solvated by two THF donors. The coppers, which have almost linear coordination (C(1)-Cu- $(1)-C(37) = 175.6(2)^{\circ}$, are bound to the cyanide ligands through the carbons and also to the ipso-carbon of the central ring of the aryl ligand. The cyanide carbon also has an essentially linear geometry, $N(1)-C(37)-Cu(1) = 179.3(5)^{\circ}$, but there is an angle of 13.3° between the CN bond and the Li₂N₂ plane. The Cu-(1)-C(1) distance is 1.906(4) Å, which is marginally longer than the 1.894(4) Å observed in the structure of (Me₂S)CuC₆H₃-2,6-Trip₂.¹⁵ However, it is the shortest Cu–C(organo) distance known for an organocuprate ion.¹⁷ The Cu-C(37) distance to the cyanide carbon is 1.858(5) Å. A short Cu–CN distance is to be expected

(13) Hope, H.; Oram, D.; Power, P. P. J. Am. Chem. Soc. **1984**, 106, 1149. (14) $(Et_2O)LiC_6H_3$ -2,6-Trip2¹⁵ (1.00 g, 1.78 mmol) in Et₂O (20 mL) was added dropwise (over ca. 1 h) to a suspension of CuCN (0.08 g, 0.89 mmol) in Et₂O (20 mL) with cooling in a dry ice bath. The solution was stirred ca. 2 h and was then allowed to come to room temperature; THF (2 mL) was added and stirring was continued for 5 h. The solution was filtered and the dark yellow filtrate was placed in a freezer (-20 °C) for 3 days to afford the a brown gray powder). ¹H NMR (THF- d_8 , 25 °C): δ 1.00 (d, 12H, J = 8.9Hz, p-CH(CH₃)₂); 1.81 (d, 12H, J = 8.9 Hz, o-CH(CH₃)₂; 1.93 (d, 12H, J =Hz, p-CH(CH₃)₂; 1.81 (d, 12H, J = 8.9 Hz, o-CH(CH₃)₂; 1.93 (d, 12H, J = 8.9 Hz, o-CH(CH₃)₂; 1.93 (d, 12H, J = 8.9 Hz, o-CH(CH₃)₂; 1.93 (sept. 2H, J = 8.0 Hz, p-CH(CH₃)₂; 3.74 (sept. 4H, J = 8.2 Hz, o-CH(CH₃)₂; 7.79 (d, 2H, J = 8.0 Hz, m-C₆H₃; 7.58 (s, 4H, m-Trip); 7.72 (t, 1H, J = 8.0 Hz, p-C₆(H₃); 1³C{¹H} NMR (THF-d₈ 25 °C): δ 24.38 (o-CH(CH₃)₂); 24.91 (THF-d₈, J = 20.7 Hz, quintet); 25.96 (p-CH(CH₃)₂); 30.27 (o-CH(CH₃)₂); 122.82 (m-C₆H₃); 124.09 (p-C₆H₃), 145.34 (*i*-Trip); 145.78 (o-Trip); 146.65 (p-Trip); 148.31 (CN); 150.09 (o-C₆H₃); 171.66 (*i*-C₆H₃). ⁷Li NMR (THF-d₈, 25 °C; Li Cl in D₂O was used as reference): δ -1.23 ppm (s). IR (Nujol mull) 2123 cm⁻¹ (C≡N). mull) 2123 cm⁻¹ (C \equiv N).

(15) Schiemenz, B.; Power, P. P. Organometallics 1996, 15, 958.

(16) Crystallographic data at 130 K with Cu Kα ($\lambda = 1.54178$ Å) radiation (Siemens Rotating Cu Anode): a = 12.842(2) Å, b = 18.788(3) Å, c = 17.285(3) Å, $\beta = 108.93(1)^\circ$, V = 4071.2(14) Å³, Z = 4, space group $P_{21/c}$, $R_1 = 0.0592$, $wR_2 = 0.153$ for $3613 > 2(\sigma)I$ data. Attempted refinement of the data with the positions of N(1) and C(37) interchanged led to a decrease in U_{eq} from 48 to 33 for N(1) and an increase in U_{eq} from 34 to 64 for C(37); the *R* value also increased slightly.

(17) (a) van Koten, G. J. Organomet. Chem. 1990, 400, 483. (b) Power, P. P. Prog. Inorg. Chem. 1991, 39, 75.

Figure 1. Thermal ellipsoid plot of **5** with H atoms omitted for clarity. Selected bond distances (Å) and angles (deg): Cu(1)-C(1) = 1.906(4), Cu(1)-C(37) = 1.858(5), N(1)-C(37) = 1.144(6), Li-N(1) = 2.046-(11), Li-N(1)' = 2.051(10), Li-O(1) = 1.934(10), Li-O(2) = 1.920-(10), C(1)-Cu(1)-C(37) = 175.6(2), Cu(1)-C(37)-N(1) = 179.3(5), N(1)-Li-N(1)' = 97.5(5), Li-N(1)-Li' = 82.5(5), O(1)-Li(1)-O(2) = 109.4(5), Li-N(1)-C(37) = 136.0(5), Li'-N(1)-C(37), 138.7(5), C(2)-C(1)-C(6) = 116.6(4).

as a result of the carbon sp-hybridization and the small size of the \mbox{CN}^- ligand.

Unfortunately, structural data for two-coordinate copper cyanide species are almost nonexistent. The mixed valent compounds $[Cu_4(CN)_6Cu(NH_3)_2]_n$ and $[Cu_3(CN)_5Cu(NH_3)_2(OH_2)]_2$ feature rare examples of two-coordinate Cu⁺ ions bound to cyanide.¹⁸ In these the cyanides bridge two copper centers in a chainlike structure, and are bound end-on through nitrogen to one copper and through carbon to another, with Cu-C distances that range from 1.8 to 1.86 Å. The Cu-C(37) distance (1.858(5) Å) lies just within this range. These distances are considerably shorter than those found for cyanocopper(I) complexes in which the Cu⁺ ion is either three-coordinate¹⁹ (Cu-C = ca. 1.90 Å) or four-coordinate²⁰ (Cu-C = ca. 1.98 Å). The C-N bond length in 5, 1.144(6) Å, is similar to that found in NaCu(CN)2·2H2O,19b K2Cu(CN)3· 3H₂O,^{19a} or KCu(CN)₂.²¹ The Li⁺ ions, which bridge the two ${Cu(CN)C_6H_3-2,6-Trip_2}^-$ units, have distorted tetrahedral coordination with average Li-O and Li-N distances of 1.93(1) and 2.05(1) Å. The Li–O distances are at the shorter end of the scale for four-coordinate Li⁺ ions bound to THF. On the other hand,

the Li–N distances are relatively long,²² but similar Li–N distances have been observed in lithium imide and certain monomeric amide structures where the nitrogen coordination number is also three.^{22b}

The structural data may be compared with those obtained from solution EXAFS spectroscopy.7 The Fourier transform of the EXAFS data for Li[Cu(CN)Me] in THF indicates two-coordinate copper geometry with neighboring atoms at ca. 1.9 and 3.1 Å, which correspond to the two carbons (from Me⁻ and CN⁻) at the shorter distance and the nitrogen (from CN⁻) at the longer one. Although EXAFS spectroscopy cannot distinguish between carbon and nitrogen coordination⁷ it is clear that the structure deduced for Li[Cu(CN)Me] is in general agreement with the structure of 5. In addition, EXAFS spectroscopy showed that the long-range order (with interactions such as $Cu-C \equiv N- -Cu$) in solid CuCN²³ or in solutions of CuCN•2LiCl was absent in THF solutions of Li[Cu(CN)Me]. This did not rule out association such as that seen in 5, however, since the Li⁺ ion is a relatively poor scatterer of X-rays. The structure of 5 is also in agreement with the dimeric formula determined for Li[Cu(CN)-Ph] in THF solution by cryoscopy.24

Compound **5** was also characterized by ¹H and ¹³C NMR and IR spectroscopy. In the ¹³C NMR spectrum of **5** (THF-*d*₈), the Cu(C₆H₃) peak was observed at 171.7 ppm, which is close to the 168.1 ppm value seen for (Me₂S)CuC₆H₃-2,6-Trip₂¹⁵ and within the 165.99–168.40 ppm range reported¹² for Li[Cu(CN)Ph] in THF-*d*₈ or Et₂O-*d*₁₀ at low temperatures. The cyanide carbon resonance was observed at 148.31 ppm, which is also close to the range observed in solution for cuprates of formula Li[Cu-(CN)R] (R = Me, Et, or Ph).¹² The IR spectrum of **5** as a Nujol mull or in THF solution displays an absorption at 2123 or 2128 cm⁻¹ that is attributable to the C≡N stretching vibration. The solution value is close to the 2133 cm⁻¹ observed for Li[Cu-(CN)Me] in THF solution.⁸ Reactivity studies of **5** are in hand.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for financial support.

Supporting Information Available: Tables of data collection parameters, atom coordinates, bond distances, angles, anisotropic thermal parameters, and hydrogen coordinates (11 pages, print/PDF). An X-ray crystallographic file in CIF format is available through the Web only. See any current masthead page for ordering information and Web access instructions.

JA9809399

⁽¹⁸⁾ Kappenstein, C.; Schubert, U. J. Chem. Soc., Chem. Commun. 1980, 1116.

^{(19) (}a) Cromer, D. T.; Larson, A. C. *Acta Crystallogr.* **1962**, *15*, 397. (b) Kappenstein, C.; Hugel, R. P. *Inorg. Chem.* **1977**, *16*, 250. (c) Kappenstein, C.; Hugel, R. C. *Inorg. Chem.* **1978**, *17*, 1945.

⁽²⁰⁾ Roof, R. B.; Larson, A. C.; Cromer, D. T. Acta Crystallogr. Sect. B 1968, 24, 269.

⁽²¹⁾ Cromer, D. T. J. Phys. Chem. 1957, 61, 1388.

^{(22) (}a) Setzer, W. N.; Schleyer, P. v. R. Adv. Organomet. Chem. **1985**, 24, 353. (b) Pauer, F.; Power, P. P. In Lithium Chemistry—A Theoretical and Experimental Overview; Sapse, A.-M., Schleyer, P. v. R., Eds.; Wiley: New York, 1985, Chapter 9; p 295.

⁽²³⁾ Cromer, D. T.; Douglas, R. M.; Staritsky, E. Anal. Chem. 1957, 29, 316.

⁽²⁴⁾ Gerold, A.; Jastrzebski, J. T. B. H.; Kronenburg, C. M. P.; Krause, N.; van Koten, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 755.